Chromatin Packing & Unpacking

Key Idea: Coiled, tightly-packed DNA is down-regulated; Unpacked DNA is up-regulated

Structure

- Role is to condense DNA to fit inside the nucleus
- Two main types of DNA packing:
 - heterochromatin: Densely packed and transcriptionally inactive DNA
 - euchromatin: Less dense, transcriptionally active DNA
- Histone Tails protrude outwards from the histones, making themselves available to enzymes

Nucleosome pictured with histones and their protruding tails

Acetylation

- Acetylation enhances transcription by making histones looser (upregulating)
- Histone Modifications
 - Reversible: does not change the DNA sequence
 - Histone Acetylation is when acetyl groups are attached to lysines in histone walls, via the histone acetyltransferase enzyme.
 - This neutralizes the lysines charge, promoting a looser chromatin structure
 - Facilitates transcription because of easier access of RNA polymerase to genes and recruitment of transcription factors.
 - Histone Deacetylation
 - Histone acetylation is reversible by the enzyme histone deacetylase that removes acetyl groups.

Histone pictured before and after acetylation

Diagram shows how methyl groups can attach to both histone tails and DNA nucleotides

Epigenetics

- Epigenome is a collection of DNA, RNA, proteins, and their chemical modifications that regulate gene expression, without changing the actual DNA sequence
 - **Regulated by modifications to histone tails**
- Epigenetic modification patterns of chromatin change during development, can respond to

Methylation

- Methylation can both increase and decrease gene expression
- Methylation
 - Methyl groups added to histone and/or DNA by the enzyme methyltransferase, resulting in condenser DNA, making the gene silently transcripted
- Demethylation
 - Removal of methyl groups, via added phosphate

• DNA Methylation: Permanent

- Because the methyl group is added to cytosine nucleotides
- Histone Methylation: Reversible
 By demethylation

Real Applications

environmental factors

- When cells are exposed to outside stimuli, the patterns of chromatin modification can become unregulated
- Epigenetics are driven by modifications at the DNA level, pre-transcription

X-inactivation

X-inactivation exemplified by comparing XX chromosomes to XY chromosomes

- Epigenetic Inheritance:
 - the inheritance of changes due to environmental factors
 - if these modifications are present in the germ cells, they can be passed down through generations
 - Example: Obesity
 - Methylated food intake can cause obese individuals to have different methylation patterns
 - methylation changes influence the gene expression of metabolic dysregulation and fat accumulation
 - environmental factors can disrupt enzyme activity that is responsible for histone acetylation and deacetylation
- X-chromosome inactivation
 - Males have XY chromosomes, while females have XX chromosomes
 - 1 X chromosome is the "normal amount", so to make up for this, females silence one of the X chromosomes in embryonic development
 - By random selection, one of the X chromosomes coils up compactly, making a Barr Body structure
 - Compacts because of methylation
 - Barr Body genes are inactive = not transcribed